Ventilation and Perfusion

By Simen Hagtvedt

What is ventilation and perfusion?

studyaid

Zones of the lung

PA = Pressure in alveolus Pa = Pressure in arteries Pv= Pressure in veins

V/Q < 1

- Reduction in ventilation relative to perfusion
- We have a blockage in alveolus with blood moving past \rightarrow decreased O2 and increased CO2
- How does the body compensate
 Pulmonary circulation = decreased O2 → vasoconstriction: body wants to match the perfusion
 - Systemic circulation = decreased O2 \rightarrow vasodilation: body wants to increase oxygen to the tissue
- What causes the vasoconstriction?
 - O2 highly soluble \rightarrow diffuse over cell membrane
 - When low amount of O2 is sensed (<70 mmhg) \rightarrow opening of Ca channels \rightarrow contraction
- V/Q closer to 0 = shunting

V/Q > 1

- Reduction in perfusion relative to ventilation
- We have a blockage in blood with oxygen moving past
- Atmosphere:
 - 0₂ 159 mmHg
 - *CO*₂ 0.2 mmHg
- Alveolus:
 - 0₂ 100 mmHg
 - CO_2 40 mmHg
- Drop in CO_2 = constriction of bronchioles
- V/Q closer to «infinite sign»= dead space

V/Q mismatch

- Intermediate state between shunt and dead space
 - Some lung areas low V/Q •
 - Others high V/Q •
- Inadequate ventilation
- Reduced oxygenation of blood
- \uparrow RR \rightarrow CO₂ normal

99% V/Q = 0V/Q mismatch $V/Q = \infty$ $0_2 < 99\%$ Shunt **Dead space**

studyai

< 99%

Inadequate gas exchange

- Caused by shunt, V/Q mismatch, dead space
- Determined by:
 - #1: response to 100% O_2
 - Shunt (V/Q = 0) wont correct with 100% O_2
 - Dead space (V/Q = ∞) will correct with 100% O_2
 - #2: hypercapnia ($\uparrow CO_2$)
 - Causes: Fever, ↓ Ventilation, ↑ Dead space
 - Dead space (V/Q = ∞) Hypercapnea
 - Shunt (V/Q = 0) <u>No</u> hypercapnea (because of ↑ ventilation)

PaCO2 α $\frac{CO2 \text{ production}}{\text{Alveolar Ventilation}} = \frac{CO2 \text{ production}}{\text{Tidal Vol - Dead Space}}$

