Acid-base disorders

MARIA W. LIED 4MD

Recording of the seminar can be found on the Studyaid teams-channel:

Files → General → Recordings → Renal and respiratory physiology 2024

Topics for today;))

- 1. Acid-base balance of the body
- 2. Mechanisms to maintain homeostasis
- 3. Pathogenesis behind the basic disturbances
- 4. Compensatory mechanisms

And lots of arterial blood gasses to interpretate inbetween!

Arterial blood gas (ABG) values

pH 7.35-7.45 pCO₂ 35-45 mmHg HCO₃- 22-26 mEq/L pO₂ 75-100 mmHg

Factors that influence body pH

(Processes that generate energy)

INTAKE, DIGESTION AND FECAL LOSS

(GI tract)

H⁺ in body fluids

Mechanism to maintain homeostasis

LUNGS

Rate and depth of breathing → control CO₂ levels Fast adaption

KIDNEYS

Control amount of bicarbonate (HCO3²⁻) Slow adaption

LE CHATELIER 'S PRINCIPLE

When a change is made to a chemical equilibrium, the equilibrium will change to counteract the imposed change.

$$CO_2 + H_2O \leftrightarrows H_2CO_3 \leftrightarrows H^+ + HCO_3^-$$

Respiratory acidosis

Depression of R.C:

→ Medications, damage/trauma, hypothermia, hypothyroidism

Pathologies directly causing decreased rate of breathing

→ obstructive lung disease, neuromuscular diseases or exhaustion

Respiratory alkalosis

Overexcitability of R.C:

→ Certain drugs, bacterias causing sepsis, hepatic encephalopathy (due to liver failure), hyperthyroidism, pregnancy, fever and anxiety.

Lung pathologies directly affecting the lungs:

→ Pulmonary edema/effusion, ARDS/pneumonia, pulmonary embolism

Metabolic acidosis

Pathologies causing ↓ HCO₃ in blood

→ Early renal failure, diarrhea, certain diuretic medications, renal tubular acidosis (Addisons disorder), Fluid infusions, TPN (nutrition directly in the vein)

Metabolic alkalosis

Causes

→ Overcorrection of hypercapnia, mineralocorticoid excess (Conn syndrome), vomiting, total volume loss.

ABG-interpretation

pH 7.20

pCO₂ 40 mmHg

HCO₃⁻ 15 mEq/L

pH 7.50

pCO₂ 31 mmHg

 HCO_3^- 24 Eq/L

pH 7.49

pCO₂ 44 mmHg

HCO₃ 30 mEq/L

ABG interpretation in 1-2-3

- 1. Identify if the imbalance is a acidosis or alkalosis? (pH)
- 2. Identify if its respiratory or metabolic? (CO₂/HCO₃)
- 3. Identify if its compensated (fully/partially?) or uncompensated

pH 7.34

pCO₂ 24 mmHg

HCO₃⁻ 13 mEq/L

pH 7.27

pCO₂ 60 mmHg

HCO₃ 27 mEq/L

pH 7.36

pCO₂ 30 mmHg

HCO₃⁻ 16 mEq/L

pH 7.38

pCO₂ 65 mmHg

HCO₃ 37 mEq/L

pH 7.45

pCO₂ 55 mmHg

HCO₃ 37 mEq/L

	Definition	Compensation	Arterial blood gas
Metabolic acidosis		Hyperventilation	↓ pH
	pH <7.35 caused by ↓ HCO ₃ -	↓ CO ₂	↓ HCO ₃ -
	concentration in blood	Compensation occurs within	↓ CO ₂ (compensation)
		minutes	
Metabolic alkalosis		Hypoventilation	↑ pH
	pH >7.45 caused by ↑ HCO ₃ .	↑ CO ₂	↑ HCO ₃ -
	concentration in blood	Compensation occurs within	↑ CO ₂ (compensation)
		minutes	
Respiratory acidosis		↑ renal reabsorption of HCO ₃ -	↓ pH
	pH <7.35 caused by ↑ CO ₂	Compensation occurs within	↑ CO ₂
	concentration in blood	hours to days	↑ HCO ₃ - (compensation)
Respiratory alkalosis		↓ renal reabsorption of HCO ₃ -	↑ pH
	pH >7.45 caused by ↓ CO ₂	Compensation occurs within	↓ CO ₂
	concentration in blood	hours to days	↓ HCO ₃ - (compensation)
			studyaid

https://abg.ninja/abg

