Acid-base disorders MARIA W. LIED 4MD # Recording of the seminar can be found on the Studyaid teams-channel: Files → General → Recordings → Renal and respiratory physiology 2024 ## Topics for today;)) - 1. Acid-base balance of the body - 2. Mechanisms to maintain homeostasis - 3. Pathogenesis behind the basic disturbances - 4. Compensatory mechanisms And lots of arterial blood gasses to interpretate inbetween! ## Arterial blood gas (ABG) values pH 7.35-7.45 pCO₂ 35-45 mmHg HCO₃- 22-26 mEq/L pO₂ 75-100 mmHg ## Factors that influence body pH (Processes that generate energy) INTAKE, DIGESTION AND FECAL LOSS (GI tract) H⁺ in body fluids ### Mechanism to maintain homeostasis ### **LUNGS** Rate and depth of breathing → control CO₂ levels Fast adaption ### **KIDNEYS** Control amount of bicarbonate (HCO3²⁻) Slow adaption #### LE CHATELIER 'S PRINCIPLE When a change is made to a chemical equilibrium, the equilibrium will change to counteract the imposed change. $$CO_2 + H_2O \leftrightarrows H_2CO_3 \leftrightarrows H^+ + HCO_3^-$$ ## Respiratory acidosis #### Depression of R.C: → Medications, damage/trauma, hypothermia, hypothyroidism #### Pathologies directly causing decreased rate of breathing → obstructive lung disease, neuromuscular diseases or exhaustion ## Respiratory alkalosis #### Overexcitability of R.C: → Certain drugs, bacterias causing sepsis, hepatic encephalopathy (due to liver failure), hyperthyroidism, pregnancy, fever and anxiety. #### Lung pathologies directly affecting the lungs: → Pulmonary edema/effusion, ARDS/pneumonia, pulmonary embolism ### Metabolic acidosis #### Pathologies causing ↓ HCO₃ in blood → Early renal failure, diarrhea, certain diuretic medications, renal tubular acidosis (Addisons disorder), Fluid infusions, TPN (nutrition directly in the vein) ### Metabolic alkalosis #### Causes → Overcorrection of hypercapnia, mineralocorticoid excess (Conn syndrome), vomiting, total volume loss. ## **ABG-interpretation** pH 7.20 pCO₂ 40 mmHg HCO₃⁻ 15 mEq/L pH 7.50 pCO₂ 31 mmHg HCO_3^- 24 Eq/L pH 7.49 pCO₂ 44 mmHg HCO₃ 30 mEq/L ## **ABG** interpretation in 1-2-3 - 1. Identify if the imbalance is a acidosis or alkalosis? (pH) - 2. Identify if its respiratory or metabolic? (CO₂/HCO₃) - 3. Identify if its compensated (fully/partially?) or uncompensated pH 7.34 pCO₂ 24 mmHg HCO₃⁻ 13 mEq/L pH 7.27 pCO₂ 60 mmHg HCO₃ 27 mEq/L pH 7.36 pCO₂ 30 mmHg HCO₃⁻ 16 mEq/L pH 7.38 pCO₂ 65 mmHg HCO₃ 37 mEq/L pH 7.45 pCO₂ 55 mmHg HCO₃ 37 mEq/L | | Definition | Compensation | Arterial blood gas | |-----------------------|---|--|-------------------------------------| | Metabolic acidosis | | Hyperventilation | ↓ pH | | | pH <7.35 caused by ↓ HCO ₃ - | ↓ CO ₂ | ↓ HCO ₃ - | | | concentration in blood | Compensation occurs within | ↓ CO ₂ (compensation) | | | | minutes | | | Metabolic alkalosis | | Hypoventilation | ↑ pH | | | pH >7.45 caused by ↑ HCO ₃ . | ↑ CO ₂ | ↑ HCO ₃ - | | | concentration in blood | Compensation occurs within | ↑ CO ₂ (compensation) | | | | minutes | | | Respiratory acidosis | | ↑ renal reabsorption of HCO ₃ - | ↓ pH | | | pH <7.35 caused by ↑ CO ₂ | Compensation occurs within | ↑ CO ₂ | | | concentration in blood | hours to days | ↑ HCO ₃ - (compensation) | | Respiratory alkalosis | | ↓ renal reabsorption of HCO ₃ - | ↑ pH | | | pH >7.45 caused by ↓ CO ₂ | Compensation occurs within | ↓ CO ₂ | | | concentration in blood | hours to days | ↓ HCO ₃ - (compensation) | | | | | studyaid | # https://abg.ninja/abg